
AWS Cost Optimization

Serverless

Optimize memory configuration for Lambda functions

Use Provisioned Concurrency to reduce costs for high traffic Lambda functions

Evaluate HTTP APIs as an alternative to API Gateway

ECS

Use Fargate instead of EC2 instances

Purchase Savings Plans for Fargate

Use ECS Capacity Provider to scale the fleet of EC2 instances

Use Fargate Spot for non-production workloads

RDS

Enable RDS Storage Auto Scaling instead of overprovisioning storage capacity

Consider switching to Aurora Serverless for unsteady

Verify that instance type still reflects the current workload

Verify that the maximum I/O performance of the compute layer matches with the storage layer

Switch to an Open Source database system (e.g., PostgreSQL instead of Oracle)

DynamoDB
Switch to On-demand capacity mode for unsteady workloads

Use auto-scaling to adjust the provisioned capacity to the workload

Elasticsearch
Make use of Reserved Instances were planning ahead is feasible

Evaluate UltraWarm tier (Preview) to retain large amounts of data at lower costs

Route 53
Increase TTL for records to reduce queries

Consolidate resolver endpoints

CloudFront
Check hit/miss ratio of cache and adjust configuration and TTL accordingly

Restrict access to S3 by using an Origin Access Identity

CloudTrail
Delete unnecessary trails

Check costs for data events (S3 and Lambda)
CloudWatch

Configure a retention period for all log groups

Check costs for metrics API calls caused by 3rd party tools

Delete needless alarms and dashboards

Identify unnecessary custom metrics

Check costs for log ingestion

VPC

Create VPC endpoints for S3 and DynamoDB

Check costs for NAT gateways and change architecture if necessary

Check costs for traffic between AZs and reduce traffic when possible

Try to avoid VPC endpoints for other services

S3

Delete unnecessary objects and buckets

Consider using S3 Intelligent Tiering

Configure lifecycle policies define a retention period for objects

Use Glacier Deep Archive for long-term data archiving

EBS

Delete snapshots created to backup data that are no longer needed

Check whether your backup solution deletes old snapshots

Delete snapshots belonging to unused AMIs

Search for unused volumes and delete them

EC2

Purchase Savings Plans for baseline capacity

Identify and terminate unused instances

Verify that instance type still reflects the current workload

Verify that the maximum I/O performance of the instance matches with the EBS volumes

Use Spot Instances for stateless and non-production workloads

Switch to latest instance types

Make use of AMD or ARM based instances

Switch to Amazon Linux or any other Operating System that is Open Source

Tools

Cost Explorer

Aggregate costs by service
Which services cause the highest costs?

Does the cost per service match with your assumptions?

Identify unexpected trends
Are costs increasing by a similar amount each month for a specific service?

Any high cost increases not caused by changes to your cloud infrastructure?

Monthly Bill Drill down into service costs

Which resources of a service cause high costs? Justify the costs.

Do the costs per service match with your estimations?

Are there any hints for costs caused by unused resources?

Budgets
Monitor costs by creating a budget alarm on forecasted costs

Monitor your Savings Plans/Reserved Instances by creating utilization budget alarms


