📣 Limited offer: subscribe to cloudonaut plus, get a t-shirt for free

📣 Limited offer: free cloudonaut t-shirt

Verify SNS messages delivered via HTTP(S) in Node.js

Michael Wittig – 14 Aug 2019

Are you implementing an HTTP/HTTPS endpoint for SNS? If so, you should definetly verify the incoming messages. Otherwise, anyone on the Internet can deliver messages to your HTTP/HTTPS endpoint. Which is a security risk.

Code

How do you verify incoming messages? The SNS documentation answers this question:

You should verify the authenticity of a notification, subscription confirmation, or unsubscribe confirmation message sent by Amazon SNS.

In a nutshell, each SNS message contains a signature that we have to verify.

Verify SNS message: check the signature

The npm module sns-validator does the job. Unfortunately, the module is old and lacks support for save caching and certificate download retries. Therefore, I decided to implement this on my own, which wasn’t as hard as expected. Let’s get started.

First, you need to install a few dependencies:

  • request and requestretry to perform HTTP(S) requests with retries
  • lru-cache to safely cache certificates without running out of memory

Install the modules with:

Special offer: cloudonaut t-shirt

Do you love our blog posts and podcast episodes? Unlock our weekly videos and online events by subscribing to cloudonaut plus.

Special offer: Join cloudonaut plus before November 30th, and we will send you a cloudonaut t-shirt for free.

Subscribe now!
npm i request requestretry lru-cache

Create a new JavaScript file (e.g., index.js) and import the dependencies we need:

const crypto = require('crypto');
const requestretry = require('requestretry');
const LRU = require('lru-cache');

According to the SNS documentation, we have to use different fields of the message based on the Type of the message delivered by SNS.

function fieldsForSignature(type) {
if (type === 'SubscriptionConfirmation' || type === 'UnsubscribeConfirmation') {
return ['Message', 'MessageId', 'SubscribeURL', 'Timestamp', 'Token', 'TopicArn', 'Type'];
} else if (type === 'Notification') {
return ['Message', 'MessageId', 'Subject', 'Timestamp', 'TopicArn', 'Type'];
} else {
return [];
}
}

We also have to come up with a way to download the certificate that we need to verify the signature. The certificate is attached to the message in the form of a URL. We have to download the certificate before we can verify the signature. Downloading things can fail for many reasons. Therefore, we retry failed download requests. To optimize for performance, we also want to cache downloaded certificates. Let’s look at the code.

const CERT_CACHE = new LRU({max: 5000, maxAge: 1000 * 60});

function fetchCert(certUrl, cb) {
const cachedCertificate = CERT_CACHE.get(certUrl);
if (cachedCertificate !== undefined) {
cb(null, cachedCertificate);
} else {
requestretry({
method: 'GET',
url: certUrl,
maxAttempts: 3,
retryDelay: 100,
timeout: 3000
}, (err, res, certificate) => {
if (err) {
cb(err);
} else {
if (res.statusCode === 200) {
CERT_CACHE.set(certUrl, certificate);
cb(null, certificate);
} else {
cb(new Error(`expected 200 status code, received: ${res.statusCode}`));
}
}
});
}
}

The cache stores a maximum of 5000 certificates and the certificates expire after 1 minute from the cache.

Last but not least, we do some input validation:

  • the fields SignatureVersion, SigningCertURL, Type, and Signature must be available
  • SignatureVersion must be 1
  • the SigningCertURL must start with https:// and we only want to download certificates from AWS
const CERT_URL_PATTERN = /^https:\/\/sns\.[a-zA-Z0-9-]{3,}\.amazonaws\.com(\.cn)?\/SimpleNotificationService-[a-zA-Z0-9]{32}\.pem$/;

function validate(message, cb) {
if (!('SignatureVersion' in message && 'SigningCertURL' in message && 'Type' in message && 'Signature' in message)) {
console.log('missing field');
cb(null, false);
} else if (message.SignatureVersion !== '1') {
console.log('invalid SignatureVersion');
cb(null, false);
} else if (!CERT_URL_PATTERN.test(message.SigningCertURL)) {
console.log('invalid certificate URL');
cb(null, false);
} else {
fetchCert(message.SigningCertURL, (err, certificate) => {
if (err) {
cb(err);
} else {
// TODO verifiy signature (insert next code block here)
}
});
}
}

Finally, the signature is verified.

const verify = crypto.createVerify('sha1WithRSAEncryption');
fieldsForSignature(message.Type).forEach(key => {
if (key in message) {
verify.write(`${key}\n${message[key]}\n`);
}
});
verify.end();
const result = verify.verify(certificate, message.Signature, 'base64');
cb(null, result);

You can test the code with a message like this:

validate({
Type: 'Notification',
MessageId: '4c807a89-9ef9-543b-bfab-2f4ed41e91b4',
TopicArn: 'arn:aws:sns:us-east-1:853553028582:marbot-dev-alert-Topic-8CT7ZJRNSA5Y',
Subject: 'INSUFFICIENT_DATA: "insufficient test" in US East (N. Virginia)',
Message: '{"AlarmName":"insufficient test","AlarmDescription":null,"AWSAccountId":"853553028582","NewStateValue":"INSUFFICIENT_DATA","NewStateReason":"tets","StateChangeTime":"2019-08-09T10:19:19.614+0000","Region":"US East (N. Virginia)","OldStateValue":"OK","Trigger":{"MetricName":"CallCount2","Namespace":"AWS/Usage","StatisticType":"Statistic","Statistic":"AVERAGE","Unit":null,"Dimensions":[{"value":"API","name":"Type"},{"value":"PutMetricData","name":"Resource"},{"value":"CloudWatch","name":"Service"},{"value":"None","name":"Class"}],"Period":300,"EvaluationPeriods":1,"ComparisonOperator":"GreaterThanThreshold","Threshold":1.0,"TreatMissingData":"- TreatMissingData: missing","EvaluateLowSampleCountPercentile":""}}',
Timestamp: '2019-08-09T10:19:19.644Z',
SignatureVersion: '1',
Signature: 'gnCKAUYX6YlBW3dkOmrSFvdB6r82Q2He+7uZV9072sdCP0DSaR46ka/4ymSdDfqilqxjJ9hajd9l7j8ZsL98vYdUbut/1IJ2hsuALF9nd/HwNLPPWvKXaK/Y3Hp57izOpeBAkuR6koitSbXX50lEj7FraaMVQfpexm01z7IUcx4vCCvZBTdQLbkWw+TYWkWNsMrqarW39zy474SmTBCSZlz1eoV6tCwYk2Z2G2awiXpnfsQRRZvHn4ot176oY+ADAFJ0sIa44effQXq+tAWE6/Z3M5rjtfg6OULDM+NGEmnVZL3xyWK8bIzB48ZclQo3ZsvLPGmCNQLlFpaP/3fGGg==',
SigningCertURL: 'https://sns.us-east-1.amazonaws.com/SimpleNotificationService-6aad65c2f9911b05cd53efda11f913f9.pem',
UnsubscribeURL: 'https://sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:853553028582:marbot-dev-alert-Topic-8CT7ZJRNSA5Y:86a160f0-c3c5-4ae1-ae50-2903eede0af1'
}, (err, result) => {
if (err) {
console.log(err);
} else {
console.log('result', result);
}
});

Summary

You should verify the authenticity of a message sent by Amazon SNS. The SNS documentation provides an in-depth description of the needed steps which can be implemented in Node.js as shown in this blog post.

Michael Wittig

Michael Wittig

I’m an independent consultant, technical writer, and programming founder. All these activities have to do with AWS. I’m writing this blog and all other projects together with my brother Andreas.

In 2009, we joined the same company as software developers. Three years later, we were looking for a way to deploy our software—an online banking platform—in an agile way. We got excited about the possibilities in the cloud and the DevOps movement. It’s no wonder we ended up migrating the whole infrastructure of Tullius Walden Bank to AWS. This was a first in the finance industry, at least in Germany! Since 2015, we have accelerated the cloud journeys of startups, mid-sized companies, and enterprises. We have penned books like Amazon Web Services in Action and Rapid Docker on AWS, we regularly update our blog, and we are contributing to the Open Source community. Besides running a 2-headed consultancy, we are entrepreneurs building Software-as-a-Service products.

We are available for projects.

You can contact me via Email, Twitter, and LinkedIn.

Briefcase icon
Hire me